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Abstract. Hyperspectral remote sensing of plants is widely used in agriculture and forestry. Fast, large-area monitoring is ap-
plied, among others, in detecting and diagnosing diseases, stress conditions or predicting the yields. Using available tools to 
increase the yields of most important crop plants (wheat, rice, corn) without posing threat to food security is essential in the 
situation of current climate changes. 
Spectral plant indices are associated with biochemical and biophysical plant characteristics. Using the plant spectral properties 
(mainly chlorophyll red light absorption and near-infrared range light reflectance in leaf intercellular spaces), it is possible to 
estimate plant condition, water and carotenoid contents or detect disease. More and more often, based on commonly used hy-
perspectral vegetation indices, new, more sensitive indices are introduced. Furthermore, to facilitate data processing, artificial 
intelligence is employed, i.e., neural networks and deep convolutional neural networks. 
It is important in ecological research to carry out long-term observations and measurements of organisms throughout their 
lifespan. A non-invasive, quick method ensures that it may be used many times and at each stage of plant development.
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1. Introduction

 Hyperspectral remote sensing – HRS consists in 
acquiring images recorded in many narrow channels, 
allowing to obtain a spectral curve for each pixel 
(Goetz et al. 2007). It exceeds similar tools due to the 
fact that it is based on the principles of material spec-
troscopy, radiation  transfer, imaging spectrometry and 
hyperspectral  data processing (Eismann 2012). HRS 
detects minor spectral features, which can be omitted 
in multi-beam scanning, thus it may be better suited for 
estimating the quantity and quality of the tested material 
(Shukla & Kot 2016).

 For years, hyperspectral remote sensing has been 
used in water resource (e.g., Govender et al. 2007) 
and forest ecosystem research (e.g., Treitz & Howarth 
1999; Koch 2010) and in geology (e.g., van der Meer 
et al. 2012). Currently, hyperspectral remote sensing 
is most commonly used in studies on vegetation in 
agriculture and forest management (e.g., Koch 2010; 
Mahlein 2016). These works concern the detection 
and diagnosis of diseases/pests (e.g., Zhang et al. 
2003; Bauriegel et al. 2011), plant growth monitor-
ing and yield prediction  (e.g., Freeman et al. 2006; 
Pittman et al. 2015), diagnostics of nutrient defi-
ciency and stress conditions (e.g., Chaerle & Van 
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der Straeten 2000; Tilling  et al. 2007). On the other 
hand, much research is devoted to the identification 
and functioning of plants (e.g., Hestira et al. 2008; 
Ustin & Gamon 2010; Adam et al. 2010; Sid’ko et 
al. 2014). 

2. Recent research trends – strengths 
and weaknesses of using Hyperspectral 

Vegetation Indices

 Many studies concentrate on the recognition and 
tracing of progress in disease symptoms in crop 
plants, such as: wheat (e.g., Behmann et al. 2018), 
barley (e.g., Zhou et al. 2019), rice (e.g., Liu et al. 
2008) or corn (e.g., Del Fiore et al. 2010). Thanks to 
hyperspectral imaging, pathogens may be detected in 
the initial phase of development, before pathological 
changes in plants are visible. This is very important 
for the production efficiency of crop plant species on 
which the global economy is based, such as: wheat, 
rice and corn. 
 Effort are made to increase crop efficiency without 
posing threat to food security (e.g., Curtis & Halford 
2014). The process of early pathogen detection is 
demanding  and usually requires different tools due 
to the ongoing changes in plant growth and develop-
ment. Recently, hyperspectral vegetation indices 
(HVI) have been combined with the application of 
neural networks (NN) that facilitate the processing of 
hyperspectral data (Lowe et al. 2017; Golhani et al. 
2018). Nagasubramanian et al. (2019), based on the 
advanced type of neural network – 3D deep convolu-
tional neural network (DCNN), showed that using 
the learnt models, we may classify and identify plant 
diseases with high accuracy (e.g., 95.73% for charcoal 
rot of soybean).
 Inteligent models that analyse thousands of spectral  
photos in the current time may be the future tools 
that soon will be used on a wide scale in the natural 
environment  monitoring of large-area crops. However, 
it should be emphasized that the application of artificial 
intelligence in plant studies conducted in laboratory is 
novelty. The majority of investigations are carried out 
in the field conditions, where the external environment 
may affect the obtained results.
 Field studies do not allow to control external factors 
that may affect the quality and accuracy of measure-
ments, e.g. light intensity or radiation angle (Epiphanio 
& Huete 1995). Accurate development of data obtained 
from large-area research is not always possible due to 
problems with the classification of individual pixels 
in a given category, e.g. vegetation or soil. Imprecise 
assignment of data and analysis of soil fragments as 
vegetation affect the results (Carlson & Ripley 1997). 
In addition, the measurement value is influenced by the 

plant development stage, leaf optical properties or leaf 
position angle (e.g. Turner et al. 1999; Sims & Gamon 
2002).
 The results of studies in which populations of the 
same species (or the same communities) occurring in 
different habitat conditions were compared showed 
differences in ecological parameters. A spectral 
curve that would be universal for a species (so-called 
pattern)  should be determined on the basis of a group 
of individuals  living in equalized environmental condi-
tions. Such data relating to a single individual could be 
analyzed in relation to higher rank units, e.g. population. 
Otherwise, the obtained spectral curves are a difficult 
to explain mixture of various dependencies.

3. Potential use of Hyperspectral Vegetation 
Indices  in plant ecology

 In ecological studies, it is important to conduct 
observations and measurements of organisms for a 
long period of their life, which is why researchers are 
looking for new, non-invasive tools. Hyperspectral 
imaging fulfills this condition. The short period of data 
acquisition, even in large-area field studies, enables 
result visualization (Jarocińska & Zagajewski 2008). 
The non-invasiveness of the method allows to use it 
repeatedly, at every stage of plant development. Thanks 
to this, it is possible to control the same individual dur-
ing its lifetime (from the seedling, through the breeding 
phase to the death) in the studies on perennial plants 
and not to measure selected traits in random popula-
tion representatives whose ages we do not know. Such 
a long-term study based on the individual’s life history 
enables a better under standing  of the biology of a given 
species and the observed relationships.

4. Individual in remote sensing and ecology 

 When analyzing works that apply remote sensing  
methods, it can be noticed that “vegetation” and 
“species”  are the most frequent research objects. In 
fact, there are not many studies carried out on an 
individual in laboratory conditions. Distinguishing 
the level of generality of the conducted research is 
very important in the context of the interpretation of 
the obtained results. Each individual grows, develops 
and reproduces in his life, and thus, while conduct-
ing research, his current state of development is ob-
served, which will change over the course of his life. 
In ecological studies, an individual is a key subject of 
research and should be well identified. The problem 
with the identification of an individual occurs in the 
group of clonal plants (Box 1), which includes over 
80% species of vascular plants (Van Groenendael & 
de Kroon 1990). 
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 Folse & Roughgarden (2010) defined an individ-
ual of a clonal plant as „(…) an integrated functional 
agent, whose components work together in coordi-
nated action analogous to the pieces of a machine, thus 
demonstrating  adaptation at the level of the whole 
organism”. Conducting  research on “vegetation”, “spe-
cies” there is a group of individuals observed that can 
have different age, different level of development, and 
thus the obtained data are not comparable with each 
other.

5. Condition of plants in remote sensing and ecology 

 Spectral plant indices are associated with biochemical 
and biophysical plant characteristics. Using the plant spec-
tral properties (mainly chlorophyll red light absorption and 
near-infrared range light reflectance in leaf intercellular 
spaces), it is possible to estimate plant condition, water 
and carotenoid contents or detect disease.  To obtain the 
most precise measurements based on the present, still 
widely used indices (Box 2), more sensitive, modified 
indices are created, such as, e.g., VNIR/SWIR HSI sensor 
for vegetation trait mapping (Dupuis et al. 2019).

Biodiv. Res. Conserv. 55: 25-30, 2019

Box 1. Clonal plant architecture
The clonal plant network consists of units connected with each other. A single unit (parental 
ramet) develops from the zygote, which reproduces vegetatively and produces daughter ramets 
connected to it by rhizomes or stolons. This way, a homogeneous network is formed. Each 
of the ramets has the ability to form all necessary structures (including leaves, roots, lateral 
meristems) to collect and produce resources (e.g. water, minerals, assimilates) (Gómez 2008). 
Single ramets are not capable of reacting independently to changing environmental conditions, 
but they can coordinate the response with other members of the network (de Kroon et al. 2005). 
The parental ramet transfers water and mineral salts to the daughter ramet, receiving assimi-
lates in exchange (Stuefer et al. 1996). As a result, they achieve success in a heterogeneous 
environment (e.g. Lynch & Balmer 2004; DeWoody et al. 2008; Tèllez et al. 2008). 

Box 2. Common vegetation indices in remote sensing
NDVI (Normalized Difference Vegetation Index) is commonly used in hyperspectral imaging 
to assess the condition of vegetation (e.g. Bhandari & Kumar 2012; Gandhi et al. 2015). It was 
first used in 1973 by Rouse. It is based on the contrast between the highest light reflectance in the 
near-infrared band and the absorption in the red band. ARVI (Atmospherically Resistant Vegeta-
tion Index) is an enhancement to the NDVI that is relatively resistant to atmospheric factors, for 
example, aerosol (Kaufman & Tanre 1992). RENDVI (Red Normalized Difference Vegetation 
Index) enables assessing chlorophyll content and structure of plant cell (Gitelson & Merzlyak 
1994; Sims & Gamon 2002). MRENDVI (Modified Red Edge Normalized Difference Vegeta-
tion Index) is a modification of the Red Edge NDVI that corrects for leaf specular reflection 
(Datt 1999; Sims & Gamon 2002). REPI (Red Edge Position Index) is a narrowband reflectance 
measurement that is sensitive to changes in chlorophyll concentration (Curran et al. 1995).
To assess plant physiological condition, PRI (Photochemical Reflectance Index) is used that 
is sensitive to changes in carotenoid pigments (e.g., xanthophyll pigments) in live foliage 
(Gamon et al. 1992), while REP (Rep Edge Point) is strongly related to chlorophyll foliar 
concentration and contents (Dawson & Curran 1998).
Other indices focus on the characteristics of water absorption. Amongst the most referred indices 
are NDWI (Normalized Difference Water Index)  is used to monitor changes in water content of 
leaves, using near-infrared (NIR) and short-wave infrared (SWIR) wavelengths (Gao 1996). NDII 
(Normalized Difference Infrared Index) is a reflectance measurement that is sensitive to changes 
in water content of plant canopies (Hardisky et al. 1983) and MSI (Moisture Stress Index) is a 
reflectance measurement that is sensitive to increasing leaf water content (Hunt & Rock 1989).
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In case when NDVI is used as a main indicator of plant 
condition, the best narrow-band NDVI predictors of 
crop biophysical variables is identified (Thenkabail et 
al. 2010). Thanks to this, NDVI that is purposely used 
in wide-band analyses, may be successfully used in 
narrow-band analyses. 
 In biology and plant ecology research, quantitative 
data on, among others, plant size and biomass serve as 
the measure of plant condition (Younginger et al. 2017), 
seed germination capacity (Campbell 2017), sexual and 
vegetative reproduction (Aarssen 2014). Such traits are 
more or less directly linked to plant fitness and can be 
used as reliable approximation of long-term perfor-
mance of individuals. However, the traits that constitute 
a component of reproductive expenditure cannot be as-
sessed at any stage of the life cycle. Additionally, they 
cannot be used to evaluate plant condition, or ‘health’ 
status, in a given time, which is essential in the analysis 
of immediate effects of environmental stimuli. In such 
studies, an estimate that is closely linked to physiologi-
cal properties of a plant is needed and this may include 
indices related to chlorophyll activity.
 Currently, ecologists often measure photosynthetic 
efficiency to evaluate plant condition. CO2 assimila-
tion rate and chlorophyll fluorescence measurements 
are usually the measure of photosynthetic efficiency 
(Sarijeva et al. 2007). Different fluorimeters can be 
distinguished depending on the chlorophyll fluorescence 
measurement approach (e.g. pulse amplitude modula-
tion (PAM) fluorimeters, the fast repetition rate (FRR) 
fluorimeters and advanced laser fluorimeters (ALF)), 
but the studied phenomenon remains the same (Sarijeva 
2007). The measurement of chorophyll a fluorescence 
kinetic induction occurs under light conditions, after 
adaptation in the dark (Kautsky effect). Fluorescence of 
chlorophyll in vivo has a maximum emission in the red 
band (~690 nm) and in the far red band (735-740 nm) 
(Govindjee 1995; Sarijeva et al. 2007). 
 Unfortunately, reliable results can be obtained when 
several dozens or even several hundred individuals are 
tested. It is time-consuming and often impossible to 
do at the same time. The measurement of chlorophyll 
fluorescence for 50 individuals of Hieracium pilosella 
L. – our research object – using a single fluorimeter 
would last 91 h 40 min, assuming that: each individual 
produced 10 daughter ramets, we select for the measure-
ment random 5 leaves from each mother and daughter 
ramet, and the measurement of one leaf lasts 2 minutes. 
This result does not take into account additional time 

for shading the plants and connecting/disconnecting the 
equipment. 
 The intensity of photosynthesis translates directly 
into the rate of growth that is widely recognized as an 
important parameter of plant life strategies (Wuyts et 
al. 2015). The rate of growth varies between species. 
However, it may also differ at an intra-specific level, 
including plastic plant responses to external factors, 
like nutrient availability, light intensity, competition, 
etc. The rate of growth is one of life history traits (sensu 
Stearns 1992), and thus, according to the resource 
allocation  principle, a negative correlation with other 
life history traits may be expected. Therefore, chloro-
phyll indices, reflect not only plant condition, but they 
may also characterize plant strategy by manifesting 
the importance of photosynthesis and placing it on the 
trade-off continuum with other traits. If this is the case, 
different individuals may exhibit different values of 
indices not necessarily because some individuals are in 
better shape, but because they are at different life stages 
that require different partitioning of resources.

6. Research perspectives

 Hyperspectral imaging, as a technique used in 
laboratory microscale studies, requires refinement, but 
has enormous potential. First of all, it is a non-invasive 
method, which is particularly important in regular plant 
condition monitoring in long-term studies. Combination 
of spectral imaging with quick and precise NN and 
DCNN analyses may enable simultaneous analyses of, 
e.g., species classification, plant condition evaluation 
and pathogen early detection. Then, at the same time, 
based on one set of data, we might be able to obtain 
results that presently require involvement of different 
specialists.
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